

CNN-based ship classification method incorporating SAR geometry information

Shreya Sharma, Kenta Senzaki, Yuzo Senda, Hirofumi Aoki Data Science Research Laboratories NEC Corporation

Motivation

Ship classification enhances the performance of maritime surveillance

Helps in quick identification of vessels involved in illegal activities

An accurate ship classification technology is needed

Ship Monitoring from Space

SAR images are now preferable for ship classification

Existing SAR Ship Classification Methods

1. Hand-crafted Features (HCF)-based

2. Convolutional Neural Network (CNN)-based

These methods classify a ship based on its appearance

Problem

Appearance information is not sufficient to achieve robust classification

Relationship between Appearance and SAR geometry

Incident angle (θ) is a key SAR geometry information which directly affects the appearance of a ship

 θ changes the imaging order of the major scattering points

Toy Example:

Proposed Solution

Use incident angle as an additional information in a CNN

Helps the CNN to combine feature information and geometry information in feature space

Representation of Incident Angle Information

Binning and one-hot encoding reduces the real-valued angles to discrete labels which accelerates CNN training

Network of Proposed Method

Feature Information*

* Bentes, C., Velotto, D. and Tings, B., "Ship classification in terrasar-x images with convolutional neural networks," IEEE Journal of Oceanic Engineering 43(1), 258-266 (2018)

Test 1: Classification performance

- Accuracy
- F-measure

Test 2: Dependence on training data size

Experimental Set-up

Dat	Specifications				
	NOAA	© ESA	Satell	ite	Sentinel-1
Container			Resol	ution	20m
			Polarization		НН
			Image size		128x128
Bulk- carrier			No. images		200/class
			Ground truth		AIS +
		©ESA			Marine Traffic
Tanker			Trainc		
			Conventional Methods		
			HCF	10 Features + SVM	
		© ESA	CNN	w/o incident angle	

*Huang, L et al., "OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation," IEEE Journal of Sel. Top. in App. Earth Obs. and Rem. Sen. 11(1), 195-208 (2018).

- Five-fold cross-validation

 Full Dataset
 Image: Constraining data: 80%
 Testing data: 20%
- Training data split into: 80%, 66%, 50%, 25%, 20% of full dataset to evaluate the effect of training data size
- 10 initial random seeds

Result 1: Classification Accuracy (Overall)

Results are averaged over 10 initial seed values

Proposed method outperforms the conventional methods

Result 2: Classification Accuracy (Each class)

Accuracy of bulk-carrier and tanker has improved

Result 3: F-measure (Overall)

Proposed method achieves the best overall f-measure

Result 4: F-measure (Each class)

Proposed method outperforms in bulk-carrier and tanker

Result 5: Effect of Training Data Size

Proposed method requires less training data for high accuracy

Conclusion

A CNN-based ship classification method incorporating SAR geometry information is proposed

The proposed method uses incident angle information to separate feature information and geometry information

The proposed method outperforms the CNN without incident angle information by **1.05%** and HCF method by **11.25%**

The proposed method achieves best f-measure for bulk-carrier and tanker but fails in container

The proposed method requires **25% less** training data as compared to the conventional CNN method

Thank you for attention!

Orchestrating a brighter world

NEC brings together and integrates technology and expertise to create the ICT-enabled society of tomorrow.

We collaborate closely with partners and customers around the world, orchestrating each project to ensure all its parts are fine-tuned to local needs.

Every day, our innovative solutions for society contribute to greater safety, security, efficiency and equality, and enable people to live brighter lives.

Appendix

A1: AIS + Synthetic Aperture Radar (SAR)

A SAR image can be used in conjunction with AIS data to detect illegal vessels in ocean

A2: Effect of Number of Incident Angle Bins

Eight bins provides the best validation accuracy

A3: Hand-crafted Features*

Feature	Formula
Length	L
Width	W
Perimeter	$2 \times (L + W)$
Area	L imes W
Shape Complexity	$P/4\pi A$ P: Perimeter
Compactness	$P/2\pi L$
Elongatedness	L/W
Aspect Ratio	W/L
Centroid X	$\frac{M_{10}}{M_{00}}$ M_{ij} : Image Moment
Centroid Y	$\frac{M_{01}}{M_{00}}$ M_{ij} : Image Moment

*Lang, H., Zhang, J., Zhang, X. and Meng, J., "Ship classification in SAR image by joint feature and classifier selection," IEEE Geoscience and Remote Sensing Letters 13(2), 212-216 (2016).

A4: Modification of conventional CNN

Added *batch-normalization* and *dropout* layer after each convolutional layer to prevent overfitting

Hyper-parameter	Value		
Learning rate	0.0001		
No. of epochs	40		
Batch-size	32		
Dropout ratio	0.2		
Momentum	0.6		

Orchestrating a brighter world

